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ABSTRACT: The present study focus on the parameters identification of an elastic-plastic behaviour law by
the mean of full-field measurements and inverse method. Titanium samples are loaded under tensile conditions.
Measurements provides displacement fields that are used to update a Finite Element (FE) model. The minimiza-
tion of the cost-function is ensured by a Levenberg-Marquardt (LM) algorithm. The whole deformation process
is considered even while necking occurs. Finally, five parameters are successfully identified. The resulting force
assessed by the FE model with the identified parameters point the mismatching of the Hollomon’s law when
necking rules the deformation.
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1 INTRODUCTION

In the recent years, several studies has been led to de-
velop the use of inverse method in parameters identi-
fication. Uniaxial tensile test on standard samples is
broadly use for models validation. In those studies,
tensile test is seldom considered until the end of the
necking process [1]. This study focus on a parameters
identification that take into account the whole defor-
mation process: including high strain necking.

2 FULL-FIELD MEASUREMENTS

2.1 Experimental setup

Uniaxial tensile tests are carried out on Commercially
Pure (CP) titanium samples. Those are clamped into
a 5 kN Instron tensile machine and digital images
are recorded during the deformation process with a
1 Hz frequency until the sample’s ruin. The sample’s
surface is previously speckled with black and white
painting sprays in order to allow Digital Image Corre-
lation (DIC). The gauged section size initially equals
35× 10 mm2 and the sheet thickness is0.5 mm.

Figure 1: Measured displacement field upon the sample picture
just before failure. FE model that repeat the measured

boundaries conditions.

2.2 Digital Image Correlation

Once the test has been led, the video data can be com-
pute to provide both longitudinal and transverse dis-
placement fields (respectivelyux anduy). The DIC
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method is performed using 7D software developed by
Vacher [2]. For this test, the grid of analysis consists
in 55 × 13 quadrilaterals of 12 by 12 pixels, which
corresponds to an area of analysis of approximately
285 mm2. The extensometric base is a square of 12
by 12 pixels. The estimated error in necking area is
about 0.1 pixels corresponding to5.26 µm.

2.3 Material constitutive equations

In this study, CP titanium is assumed to exhibit an
anisotropic elastic-plastic behaviour. The Young’s
modulus is set toE = 111800 MPa and the Poisson’s
ratio toν = 0.34. The hardening curve is defined by
a Hollomon’s law as following:

σ = σy + Kεn
p (1)

whereσy = 368 MPa is the yield stress,εp is the
plastic strain,K andn are two parameters to be iden-
tified. The anisotropic behaviour is represented by the
Hill criterion:
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whereF , G, H, L, M , N are material parameters
characterizing the anisotropy. In the case of a sheet-
formed material with the plane stress assumption and
if the yield stressσy at 0◦ is taken as reference, this
criterion amounts to an expression showing only 3 pa-
rameters as defined in Abaqus by the following yield
stress ratio:
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3 IDENTIFICATION SCHEME

3.1 The inverse method

The inverse method approach propose to extract con-
stitutive parameters from the measurements of het-
erogeneous strain fields. Table 1 summarizes knowns
and unknowns of both direct and inverse methods [3].

Table 1: Direct and inverse problems
Direct Inverse problem

known Geometry Geometry
Loading distributionf Resulting forceF
Constitutive equations Constitutive equations
Constitutive parameters u or ε

unknown u, ε, σ Constitutive parameters

Geometry, resulting force and the constitutive
equations are seta priori then the only materials
parameters (K, n,R22, R33, R12) will be identified in
this study. In 1991, Hendricks [4] first proposed a
solution of this latter problem based on the Finite El-
ement Method (FEM). It consist in updating of a fi-
nite element model in order to assess numerically dis-
placement fields that can be compared to the exper-
imental ones. This resolution method can be repre-
sented by the following block diagram (figure 2).
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Figure 2: Block diagram of the parameters identification
problem.

3.2 Optimization loop

The identification of the five parameters is based on
a LM optimization method. The cost function to be
minimized is expressed by the least-square difference
of measured and calculated displacement fields such
as:

C(p) =
m∑

i=1

n∑
j=1
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(4)
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wherep is the unknown parameters column,n the
number of measured points andm the number of step
times taken into account. As introduced by Lecompte
[5], the cost function is neither weighed [4, 6] nor us-
ing penalty terms [7]. It is expressed only by the mean
of displacements. The minimum of the cost function
is found by solving the iterative scheme presented in
equation (5).

[
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(5)
where I is the identity matrix, λLM is the

Levenberg-Marquardt multiplier such as defined by
Kleinermann in [8] andJ is the sensitivity matrix.
This latter matrix is compute using the following for-
ward finite difference scheme:

Jij =
∂uFEM

i (p)

∂p
j

≈
uFEM

i (p, pj + ∆j)− uFEM
i (p)

δ

(6)
where∆ andδ are defined by∆j = δ · pj andδ is

arbitrary set to0.002.

4 NUMERICAL MODEL

4.1 Finite element analysis

The experimental conditions has been repeated in
Abaqus FE code. A shell model of the DIC grid has
been created and meshed with quadrangular elements.
The loading conditions that were applied to the both
ends of this grid has been picked from the DIC anal-
ysis and match the measured experimental displace-
ments of the DIC grid (see figure 1). For the sake
of numerical stability the FE mesh has been refined
to 70 × 15 elements. In order to compare numeri-
cal and experimental displacements at the same ma-
terial points, interpolation was led on the numerical
fields. It provides the numerical displacements val-
ues at the same points than the experimental ones. In
order to ensure a reasonable calculation time, only5
step times were considered. Those step times were
uniformly spread along the hardening curve from the
beginning to the end of the plastic zone. Since, neck-
ing is also considered and the last step time was cho-
sen to match the last instant before sample’s failure.

As a consequence, both experiment and FEM analy-
sis are led until the end of the necking phenomenon.
When the sample reach this stage of deformation, it
exhibits shear in the neck area, this allows the identi-
fication of the three anisotropic parameters define by
the Hill’s criterion (see section 2.3).

5 Results

The estimated value of the five parameters to iden-
tify and the problem’s cost function are summarized
in Table 2. The start point of the anisotropic param-
eters was chosen such as the initial behaviour match
the isotropic case.

Table 2: Material parameters and cost function values
initial values final values

K 450 443.79
n 0.3 0.5054

R22 1 1.054
R33 1 1.3086
R12 1 0.8823
C(p) 19.4 · 10−3 9.4 · 10−3

CPU (hrs)1 - 8.5
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Figure 3: Calculated and measured resulting force. Markers
represents the considered step times.

The measured resulting forceF can be plotted
versus the calculated one (figure 3). The dashed
curves represents the numerical response assessed us-
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ing respectively the identified and the initial parame-
ters, while the solid curve represents the experimental
response. The initial set of parameters is responsible
of a numerical collapse of the model before the end of
the prescribed displacement. Indeed this set induce a
early failure of the sample as shown by figure 3. The
improvement on model fitting can be verified by plot-
ting the cost-function value versus the iteration num-
ber (figure 4).

Figure 4: Decreasing of the cost-function value versus iteration
number.

However, the fitting of the elastic behaviour is
poor and the experimental Young’s modulus value
seems to be different than the chosen one. In order to
improve the numerical response further studies will
focused on the identification on elastic parameters.
Moreover, it can be seen on figure 3 that the fitting of
numerical model on experimental response is getting
rougher when the necking phenomenon becomes sig-
nificant. This is pointing the mismatching of the Hol-
lomon law with the plastic behaviour at high strains
and especially when necking rules the material defor-
mation.
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Figure 5: Equivalent plastic strain fieldsεeq
p for initial and

identified models vs. the experimental field (step time146 s).

Figure 5 presents equivalent plastic strain fields
for both initial and identified parameters compared
to the experimental measurement. A rather good
agreement is obtained even if boundary conditions are
somehow different.

6 CONCLUSIONS

A mixed numerical-experimental method has been
used to identify material parameters under tensile
loading conditions. This approach consists in min-
imizing a cost-function based on both experimental
and numerical displacement fields. The presented re-
sults point the efficiency of the LM algorithm to pro-
vide accurate values (displacements and loading) after
only 6 iterations. However, the accuracy of the pre-
sented method can be improved by performing tests
leading to more heterogeneous fields (e.g. deep draw-
ing forming, bulge test...).
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