
1 INTRODUCTION 

A numerical model is developed to simulate the 

filling stage of the injection moulding process. In 

order to obtain an accurate prediction of the filling 

flow behaviour we have combined a conservative 

level set method with a momentum viscous flow 

equations.  

The first section of the paper concerns the level set 

method applied to simulate a bubble rising in a 

liquid. In this case, the classical level set method is 

not conservative, and a correction is introduced to 

insure the mass conservation of the system.  

In the second section this method is applied to 

describe the front evolution during filling in the 

injection moulding process. The mathematical 

model of the flow and the level set method is briefly 

introduced. In this case, the proposed correction is 

not necessary, because, contrary to the bubble flow 

configuration, the air volume in the injection 

moulding is escaped and replaced by the polymer 

liquid. The simulation of a polymer flow in a 

rectangular cavity is then performed in non-

isothermal conditions.  

In the last part, a parametric study of the filling flow 

is presented and discussed. Fountain flow, 

temperature profiles, density and velocity evolutions 

are presented and commented. The role of the 

thermal contact resistance (TCR) is shown by 

comparing simulation results with and without a 

representative TCR value.   

2 LEVEL SET METHOD 

2.1 The level set equation 

In order to track the interface between two fluids in 

two phases flows, several methods exist in the 

literature. The standard level set method is known to 

be easy to implement numerically. But in several 

situations, this method needs a correction in order to 

be conservative. Here, we present an application of 

this method to follow the boundaries of an air bubble 

moving in a liquid (water). It consists in a gas 

bubble rising in a cylindrical volume of water, where 

the interface energy or tension plays an important 

role. It is then necessary to compute correctly this 
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interface. The volume of the whole system remains 

constant, but the resolution of the problem by means 

of the level set method shows that the bubble loses a 

part of its volume when moving. A correction based 

on a penalty factor is then proposed to insure the 

volume conservation. 

The flow problem is modelled by the following 

equation:  

( )

ji

j i
i

i

j i

i
i i

j

uu

x xDu p
g

Dt x x

k
x

η
ρ ρ

φσ δ φ

  ∂∂∂ +    ∂ ∂ ∂  = − +
∂ ∂

∂+
∂

          (1) 

where D/Dt denotes the material derivative, σ is the 
surface tension, δ(φ) is the Dirac function, and ki the 
curvature defined by: 
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with Ni the normal vector defined as: 
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The interface location is determined implicitly by 

means of the level function φ by solving the 

following equation: 
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where φ = 0 correspond to the interface.  
In equation (4) the right side term corresponds to a 

numerical added viscous term.   

In order to compute the distance function φ, an 
initialisation equation is introduced and iterated for 

few steps in fictitious time τ : 
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where S(φ0) = sign(φ0) and ψ(t = 0) = φ0. see [4] for 

more details concerning the level set function.  

To compute the material properties (density, heat 

capacity, thermal conductivity, viscosity) at the 

junction between the two fluids, one introduces a 

Heaviside function: 
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In numerical simulations, the abrupt jump of the 

fluids properties due to equation (6) causes 

instabilities when using the finite element method. 

Therefore, a smeared out Heaviside function is 

introduced: 
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where ε corresponds to the half thickness of the 

interface or an arbitrary chosen small number. The 

interface thickness shall depend on the mesh 

elements size.  The thermophysical properties are 

then linked to φ.  
In a system with two immiscible incompressible 

fluids, they can be defined by using classical mixture 

laws: 

( )1 2 1 ( ) smg g g g H φ= + −             (8) 

where g1 is defined in Ω1 (polymer domain), and g2 

in Ω2 (air domain).  

2.2 Correction with the penalty factor 

Due to the numerical approximations, a mass loss 

occurs in the flow. Corrections are then needed to 

insure a mass conservation. To do so, we introduce 

an absolute constraint in the kinematic condition: 
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where β is the penalty factor, and Vol* is the initial 
volume of the disperse phase. 

Fig. 1. Relative variation of the bubble volume versus time 

 

Figure 1 shows the relative variation, in percent, of 

the air bubble volume versus time. Two cases are 

confronted. The first one without using penalty 

factor (β = 0), the second one by using penalty factor 
(β  = 100, 200). We observe that the introduction of 

a penalty factor enhances clearly the volume 

conservation. Particularly, in this case, the β  = 100 
is the optimal value.  
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3 FILLING FLOW AND ENERGY MODEL 

3.1 Non-isothermal viscous fluid flow equations 

Momentum, continuity and energy equations for 

incompressible flows can be respectively written as. 
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where D/Dt denotes the material derivative, ρ, cp, 

and k are the density, the heat capacity and the 

thermal conductivity of the fluid respectively. The 

strain tensor d is defined as:  
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To effectively describe the shear thinning effect, a 

Cross viscosity law is employed:   
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where the equivalent strain rate is given by:  

2 :ij ijd dγ =
i

                  (15) 

Here, n is the power-law index, τ* the relaxation 
time, and η0(T, p) the zero shear rate viscosity. 

3.2 Boundary and initial conditions 

A no slip condition is imposed at the interface 

between the polymer and mould. Downstream the 

polymer flow front, a free slip condition is 

prescribed, in order to enable the contact point (air-

polymer-mould) to move freely. Hence, the 

boundary condition along the mould walls is a 

function of the type of material, which is indicated 

by the level set function φ.   The mould walls are 

impermeable, except at the air vents Γout, where the 

air is allowed to leave the mould.  As an initial 

condition for the temperature problem, a uniform 

temperature field over the entire domain is imposed. 

At the injection gate Γinlet, an injection temperature 

is prescribed. At the walls, we assume a thermal 

contact resistance (TCR) between the polymer melt 

and the mould about 10
-5
 and 10

-3 
m

2
.K/W. 
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Fig. 2. Geometry of the mould cavity  

The level set method presented in section 2 is 

coupled with the momentum equation without any 

correction. The standard formulation is then solved 

together with the flow and energy equations. 

In figure 3, we have compared the polymer mass 

evolution in the cavity, from the initial time to the 

end of the filling step. Step by step during 

calculation, no differences are observed between the 

mass calculated and that ideally injected for each 

time. The level set method is then considered 

conservative. 
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Fig. 3. Mass loss percentage versus filling time at the inlet of 

the cavity 

4 RESULTS AND DISCUSSION 

The polymer used is a polyacetal POM-M90-44. All 

its characteristics are given in [5]. The viscosity is 

represented by means of a Cross-Arrhenius Law.  

Figure 4 shows the viscosity evolution at several 

locations in the mould with and without TCR. As 

expected, we can observe that the viscosity values 

are affected both by the temperature and the shear 

rate. The introduction of a TCR influences the 

viscosity evolution as a consequence of its effect on 

the heat transfer. Near the mould walls, the 

viscosities are higher due to the temperature effect 

modeled by the Arrhenius law. 

In Figure 5, we present the cross-sectional 

temperature distributions at several longitudinal 

positions X. One notices an important temperature 

gradient from the wall to the core. This gradient is 

less important when a TCR is taken into account, 



and a discontinuity in the temperature profile is then 

observed. This temperature profile is responsible for 

all the thermophysical properties gradients in 

injected parts. The high viscosity values near walls, 

due to the decrease in temperature, leads to the 

reduction of the velocities in this zone. Hence, 

because of the mass conservation, the flow is 

accelerated in the central zone (far from the walls) as 

shown in figure 6. The no-slip boundary condition at 

the mould walls and the polymer-air interface cause 

a stretching flow and a shear flow in this zone. The 

front continuously splits along the interface, leading 

to a 2D velocity field in the thickness direction. This 

phenomenon is called fountain flow and is well 

represented by the model.  Figure 7 shows this effect 

on the polymer front at several times during the 

filling stage. The fountain flow is responsible, in 

large part, of the physical properties of the skin of 

injected parts.  
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Fig. 4. Viscosity versus shear rate at the end of the filling time 

for several locations X/L in the cavity: influence of the TCR 
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Fig. 5. Temperature field within the cross section Y/h, at the 

end of the filling time, for different locations X/L: influence of 

TCR parameter 
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Fig. 6. Velocity profile within the cross section Y/h for 

different location X/L, influence of TCR parameter 

 

 
Fig. 7. Fountain flow (isocontours) and velocity field (arrows) 

5 CONCLUSIONS 

In this paper numerical experiments demonstrate and 

validate the performance of the level set method in 

describing interface evolution in two phases flows. 

In confined volumes, a correction is needed but still 

easy to implement. An example is performed in the 

case of a rising bubble. This method is thus suitable 

for the numerical simulation of filling phase in the 

polymer injection moulding process. A parametric 

study of this configuration confirms that all the 

physical phenomena can be represented with good 

accuracy. 
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